Filtro médio de 8 pontos em movimento


Resposta de Frequência do Filtro Médico de Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso. A resposta de impulso de uma média móvel em L é Como o filtro médio móvel é FIR, a resposta de freqüência reduz-se à soma finita. Pode usar a identidade muito útil para escrever a resposta de freqüência como onde nós deixamos ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função, a fim de determinar quais freqüências obtêm o filtro desatualizado e atenuados. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianes por amostra. Observe que em todos os três casos, a resposta de freqüência possui uma característica de passagem baixa. Um componente constante (zero freqüência) na entrada passa pelo filtro não atenuado. Certas freqüências mais altas, como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro de passagem baixa, então não fizemos muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. A trama acima foi criada pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-maome4)). (1-exp (-iomega)) H8 (18) (1-exp (- Iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-maome16)). (1-exp (-maomega)) trama (omega, abs (H4) abs (H8) abs ( H16)) eixo (0, pi, 0, 1) Copyright copy 2000- - Universidade da Califórnia, Berkeley Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média do primeiro 3 períodos de tempo e colocou-o ao lado do período 3. Poderíamos ter colocado a média no meio do intervalo de tempo de três períodos, isto é, ao lado do período 2. Isso funciona bem com períodos de tempo estranhos, mas não tão bons para até mesmo períodos de tempo. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar este problema, suavizamos as MAs usando M 2. Assim, suavizamos os valores suavizados. Se medimos um número par de termos, precisamos suavizar os valores suavizados. A tabela a seguir mostra os resultados usando M 4.

Comments